D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
proc
/
thread-self
/
root
/
opt
/
hc_python
/
lib64
/
python3.8
/
site-packages
/
sqlalchemy
/
util
/
Filename :
topological.py
back
Copy
# util/topological.py # Copyright (C) 2005-2024 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php """Topological sorting algorithms.""" from __future__ import annotations from typing import Any from typing import Collection from typing import DefaultDict from typing import Iterable from typing import Iterator from typing import Sequence from typing import Set from typing import Tuple from typing import TypeVar from .. import util from ..exc import CircularDependencyError _T = TypeVar("_T", bound=Any) __all__ = ["sort", "sort_as_subsets", "find_cycles"] def sort_as_subsets( tuples: Collection[Tuple[_T, _T]], allitems: Collection[_T] ) -> Iterator[Sequence[_T]]: edges: DefaultDict[_T, Set[_T]] = util.defaultdict(set) for parent, child in tuples: edges[child].add(parent) todo = list(allitems) todo_set = set(allitems) while todo_set: output = [] for node in todo: if todo_set.isdisjoint(edges[node]): output.append(node) if not output: raise CircularDependencyError( "Circular dependency detected.", find_cycles(tuples, allitems), _gen_edges(edges), ) todo_set.difference_update(output) todo = [t for t in todo if t in todo_set] yield output def sort( tuples: Collection[Tuple[_T, _T]], allitems: Collection[_T], deterministic_order: bool = True, ) -> Iterator[_T]: """sort the given list of items by dependency. 'tuples' is a list of tuples representing a partial ordering. deterministic_order is no longer used, the order is now always deterministic given the order of "allitems". the flag is there for backwards compatibility with Alembic. """ for set_ in sort_as_subsets(tuples, allitems): yield from set_ def find_cycles( tuples: Iterable[Tuple[_T, _T]], allitems: Iterable[_T] ) -> Set[_T]: # adapted from: # https://neopythonic.blogspot.com/2009/01/detecting-cycles-in-directed-graph.html edges: DefaultDict[_T, Set[_T]] = util.defaultdict(set) for parent, child in tuples: edges[parent].add(child) nodes_to_test = set(edges) output = set() # we'd like to find all nodes that are # involved in cycles, so we do the full # pass through the whole thing for each # node in the original list. # we can go just through parent edge nodes. # if a node is only a child and never a parent, # by definition it can't be part of a cycle. same # if it's not in the edges at all. for node in nodes_to_test: stack = [node] todo = nodes_to_test.difference(stack) while stack: top = stack[-1] for node in edges[top]: if node in stack: cyc = stack[stack.index(node) :] todo.difference_update(cyc) output.update(cyc) if node in todo: stack.append(node) todo.remove(node) break else: node = stack.pop() return output def _gen_edges(edges: DefaultDict[_T, Set[_T]]) -> Set[Tuple[_T, _T]]: return {(right, left) for left in edges for right in edges[left]}