D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
opt
/
hc_python
/
lib64
/
python3.8
/
site-packages
/
sqlalchemy
/
dialects
/
postgresql
/
Filename :
array.py
back
Copy
# dialects/postgresql/array.py # Copyright (C) 2005-2024 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php # mypy: ignore-errors from __future__ import annotations import re from typing import Any from typing import Optional from typing import TypeVar from .operators import CONTAINED_BY from .operators import CONTAINS from .operators import OVERLAP from ... import types as sqltypes from ... import util from ...sql import expression from ...sql import operators from ...sql._typing import _TypeEngineArgument _T = TypeVar("_T", bound=Any) def Any(other, arrexpr, operator=operators.eq): """A synonym for the ARRAY-level :meth:`.ARRAY.Comparator.any` method. See that method for details. """ return arrexpr.any(other, operator) def All(other, arrexpr, operator=operators.eq): """A synonym for the ARRAY-level :meth:`.ARRAY.Comparator.all` method. See that method for details. """ return arrexpr.all(other, operator) class array(expression.ExpressionClauseList[_T]): """A PostgreSQL ARRAY literal. This is used to produce ARRAY literals in SQL expressions, e.g.:: from sqlalchemy.dialects.postgresql import array from sqlalchemy.dialects import postgresql from sqlalchemy import select, func stmt = select(array([1,2]) + array([3,4,5])) print(stmt.compile(dialect=postgresql.dialect())) Produces the SQL:: SELECT ARRAY[%(param_1)s, %(param_2)s] || ARRAY[%(param_3)s, %(param_4)s, %(param_5)s]) AS anon_1 An instance of :class:`.array` will always have the datatype :class:`_types.ARRAY`. The "inner" type of the array is inferred from the values present, unless the ``type_`` keyword argument is passed:: array(['foo', 'bar'], type_=CHAR) Multidimensional arrays are produced by nesting :class:`.array` constructs. The dimensionality of the final :class:`_types.ARRAY` type is calculated by recursively adding the dimensions of the inner :class:`_types.ARRAY` type:: stmt = select( array([ array([1, 2]), array([3, 4]), array([column('q'), column('x')]) ]) ) print(stmt.compile(dialect=postgresql.dialect())) Produces:: SELECT ARRAY[ARRAY[%(param_1)s, %(param_2)s], ARRAY[%(param_3)s, %(param_4)s], ARRAY[q, x]] AS anon_1 .. versionadded:: 1.3.6 added support for multidimensional array literals .. seealso:: :class:`_postgresql.ARRAY` """ __visit_name__ = "array" stringify_dialect = "postgresql" inherit_cache = True def __init__(self, clauses, **kw): type_arg = kw.pop("type_", None) super().__init__(operators.comma_op, *clauses, **kw) self._type_tuple = [arg.type for arg in self.clauses] main_type = ( type_arg if type_arg is not None else self._type_tuple[0] if self._type_tuple else sqltypes.NULLTYPE ) if isinstance(main_type, ARRAY): self.type = ARRAY( main_type.item_type, dimensions=( main_type.dimensions + 1 if main_type.dimensions is not None else 2 ), ) else: self.type = ARRAY(main_type) @property def _select_iterable(self): return (self,) def _bind_param(self, operator, obj, _assume_scalar=False, type_=None): if _assume_scalar or operator is operators.getitem: return expression.BindParameter( None, obj, _compared_to_operator=operator, type_=type_, _compared_to_type=self.type, unique=True, ) else: return array( [ self._bind_param( operator, o, _assume_scalar=True, type_=type_ ) for o in obj ] ) def self_group(self, against=None): if against in (operators.any_op, operators.all_op, operators.getitem): return expression.Grouping(self) else: return self class ARRAY(sqltypes.ARRAY): """PostgreSQL ARRAY type. The :class:`_postgresql.ARRAY` type is constructed in the same way as the core :class:`_types.ARRAY` type; a member type is required, and a number of dimensions is recommended if the type is to be used for more than one dimension:: from sqlalchemy.dialects import postgresql mytable = Table("mytable", metadata, Column("data", postgresql.ARRAY(Integer, dimensions=2)) ) The :class:`_postgresql.ARRAY` type provides all operations defined on the core :class:`_types.ARRAY` type, including support for "dimensions", indexed access, and simple matching such as :meth:`.types.ARRAY.Comparator.any` and :meth:`.types.ARRAY.Comparator.all`. :class:`_postgresql.ARRAY` class also provides PostgreSQL-specific methods for containment operations, including :meth:`.postgresql.ARRAY.Comparator.contains` :meth:`.postgresql.ARRAY.Comparator.contained_by`, and :meth:`.postgresql.ARRAY.Comparator.overlap`, e.g.:: mytable.c.data.contains([1, 2]) Indexed access is one-based by default, to match that of PostgreSQL; for zero-based indexed access, set :paramref:`_postgresql.ARRAY.zero_indexes`. Additionally, the :class:`_postgresql.ARRAY` type does not work directly in conjunction with the :class:`.ENUM` type. For a workaround, see the special type at :ref:`postgresql_array_of_enum`. .. container:: topic **Detecting Changes in ARRAY columns when using the ORM** The :class:`_postgresql.ARRAY` type, when used with the SQLAlchemy ORM, does not detect in-place mutations to the array. In order to detect these, the :mod:`sqlalchemy.ext.mutable` extension must be used, using the :class:`.MutableList` class:: from sqlalchemy.dialects.postgresql import ARRAY from sqlalchemy.ext.mutable import MutableList class SomeOrmClass(Base): # ... data = Column(MutableList.as_mutable(ARRAY(Integer))) This extension will allow "in-place" changes such to the array such as ``.append()`` to produce events which will be detected by the unit of work. Note that changes to elements **inside** the array, including subarrays that are mutated in place, are **not** detected. Alternatively, assigning a new array value to an ORM element that replaces the old one will always trigger a change event. .. seealso:: :class:`_types.ARRAY` - base array type :class:`_postgresql.array` - produces a literal array value. """ def __init__( self, item_type: _TypeEngineArgument[Any], as_tuple: bool = False, dimensions: Optional[int] = None, zero_indexes: bool = False, ): """Construct an ARRAY. E.g.:: Column('myarray', ARRAY(Integer)) Arguments are: :param item_type: The data type of items of this array. Note that dimensionality is irrelevant here, so multi-dimensional arrays like ``INTEGER[][]``, are constructed as ``ARRAY(Integer)``, not as ``ARRAY(ARRAY(Integer))`` or such. :param as_tuple=False: Specify whether return results should be converted to tuples from lists. DBAPIs such as psycopg2 return lists by default. When tuples are returned, the results are hashable. :param dimensions: if non-None, the ARRAY will assume a fixed number of dimensions. This will cause the DDL emitted for this ARRAY to include the exact number of bracket clauses ``[]``, and will also optimize the performance of the type overall. Note that PG arrays are always implicitly "non-dimensioned", meaning they can store any number of dimensions no matter how they were declared. :param zero_indexes=False: when True, index values will be converted between Python zero-based and PostgreSQL one-based indexes, e.g. a value of one will be added to all index values before passing to the database. """ if isinstance(item_type, ARRAY): raise ValueError( "Do not nest ARRAY types; ARRAY(basetype) " "handles multi-dimensional arrays of basetype" ) if isinstance(item_type, type): item_type = item_type() self.item_type = item_type self.as_tuple = as_tuple self.dimensions = dimensions self.zero_indexes = zero_indexes class Comparator(sqltypes.ARRAY.Comparator): """Define comparison operations for :class:`_types.ARRAY`. Note that these operations are in addition to those provided by the base :class:`.types.ARRAY.Comparator` class, including :meth:`.types.ARRAY.Comparator.any` and :meth:`.types.ARRAY.Comparator.all`. """ def contains(self, other, **kwargs): """Boolean expression. Test if elements are a superset of the elements of the argument array expression. kwargs may be ignored by this operator but are required for API conformance. """ return self.operate(CONTAINS, other, result_type=sqltypes.Boolean) def contained_by(self, other): """Boolean expression. Test if elements are a proper subset of the elements of the argument array expression. """ return self.operate( CONTAINED_BY, other, result_type=sqltypes.Boolean ) def overlap(self, other): """Boolean expression. Test if array has elements in common with an argument array expression. """ return self.operate(OVERLAP, other, result_type=sqltypes.Boolean) comparator_factory = Comparator @property def hashable(self): return self.as_tuple @property def python_type(self): return list def compare_values(self, x, y): return x == y @util.memoized_property def _against_native_enum(self): return ( isinstance(self.item_type, sqltypes.Enum) and self.item_type.native_enum ) def literal_processor(self, dialect): item_proc = self.item_type.dialect_impl(dialect).literal_processor( dialect ) if item_proc is None: return None def to_str(elements): return f"ARRAY[{', '.join(elements)}]" def process(value): inner = self._apply_item_processor( value, item_proc, self.dimensions, to_str ) return inner return process def bind_processor(self, dialect): item_proc = self.item_type.dialect_impl(dialect).bind_processor( dialect ) def process(value): if value is None: return value else: return self._apply_item_processor( value, item_proc, self.dimensions, list ) return process def result_processor(self, dialect, coltype): item_proc = self.item_type.dialect_impl(dialect).result_processor( dialect, coltype ) def process(value): if value is None: return value else: return self._apply_item_processor( value, item_proc, self.dimensions, tuple if self.as_tuple else list, ) if self._against_native_enum: super_rp = process pattern = re.compile(r"^{(.*)}$") def handle_raw_string(value): inner = pattern.match(value).group(1) return _split_enum_values(inner) def process(value): if value is None: return value # isinstance(value, str) is required to handle # the case where a TypeDecorator for and Array of Enum is # used like was required in sa < 1.3.17 return super_rp( handle_raw_string(value) if isinstance(value, str) else value ) return process def _split_enum_values(array_string): if '"' not in array_string: # no escape char is present so it can just split on the comma return array_string.split(",") if array_string else [] # handles quoted strings from: # r'abc,"quoted","also\\\\quoted", "quoted, comma", "esc \" quot", qpr' # returns # ['abc', 'quoted', 'also\\quoted', 'quoted, comma', 'esc " quot', 'qpr'] text = array_string.replace(r"\"", "_$ESC_QUOTE$_") text = text.replace(r"\\", "\\") result = [] on_quotes = re.split(r'(")', text) in_quotes = False for tok in on_quotes: if tok == '"': in_quotes = not in_quotes elif in_quotes: result.append(tok.replace("_$ESC_QUOTE$_", '"')) else: result.extend(re.findall(r"([^\s,]+),?", tok)) return result